Axiomatizing modal fixpoint logics

Yde Venema
http://staff.science.uva.nl/~yde

SYSMICS, 8 september 2016

(largely joint work with Engqvist, Seifan, Santocanale, Schrdder, . ..

http://staff.science.uva.nl/~yde

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

Example

» Add master modality (x) to the language ML of modal logic

’ <*>p = \/HEUJ <>np
s Ik (x)p iff there is a finite path from s to some p-state

Example

» Add master modality (x) to the language ML of modal logic
’ <*>p = \/HEUJ <>np

s Ik (x)p iff there is a finite path from s to some p-state
> (x)p e pVO(x)p

Example

» Add master modality (x) to the language ML of modal logic
’ <*>p = \/HEUJ <>np
s Ik (x)p iff there is a finite path from s to some p-state
> (x)p e pVO(x)p
» Fact (x)p is the least fixpoint of the ‘equation’ x <> pV Ox

Example

» Add master modality (x) to the language ML of modal logic
’ <*>p = \/HEUJ <>np

s Ik (x)p iff there is a finite path from s to some p-state
(x)p <> pV O(x)p

Fact (x)p is the least fixpoint of the ‘equation’ x <> p VvV Ox

vYyy

Notation: (x)p = pux.pV <x.

Example

v

Add master modality (*) to the language ML of modal logic
<*>p = \/HEUJ <>np

s Ik (x)p iff there is a finite path from s to some p-state
(x)p <> pV O(x)p

Fact (x)p is the least fixpoint of the ‘equation’ x <> p VvV Ox

v

Notation: (x)p = pux.pV <x.
Variant (PDL): (a*)¢ := pux.¢ V {a)x

vvyyvyy

More examples

> Upyp =V (Y AOUpy)

More examples

> Uy =V (¢ AOUpy)
Upy) .= ux.p V (¢ A Ox)

More examples

> Upy =V (3 AOUptp)
Upy) .= ux.p V (¢ A Ox)
» Co=p AN KipAN; KiC(\; Kig) A ...

More examples

> Upth =@V (¢ AOUpy)
Upy) .= ux.p V (¢ A Ox)

» Co=p AN KipAN; KiC(\; Kig) A ...

Co=p AN\ KCp

More examples

> Upth =@V (¢ AOUpy)
Upy) .= ux.p V (¢ A Ox)

» Co=p AN KipAN; KiC(\; Kig) A ...

Co=p AN\ KiCp
Cyp =vx.p AN\, Kix

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either
» new fixpoint connectives such as (x), U, C, ...

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either

» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either

» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx ~ uML

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either
» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx ~ uML

» Motivation 1: increase expressive power
» e.g. enable specification of ongoing behaviour

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either
» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx ~ uML

» Motivation 1: increase expressive power
» e.g. enable specification of ongoing behaviour

» Motivation 2: generally nice computational properties

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either
» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx ~ uML

» Motivation 1: increase expressive power
» e.g. enable specification of ongoing behaviour

» Motivation 2: generally nice computational properties

» Combined: many applications in process theory, epistemic logic, ...

Modal Fixpoint Logics

» Modal fixpoint languages extend basic modal logic with either
» new fixpoint connectives such as (x), U, C, ...~ LTL, CTL, PDL
» explicit fixpoint operators ux, vx ~ uML
» Motivation 1: increase expressive power
» e.g. enable specification of ongoing behaviour
» Motivation 2: generally nice computational properties
» Combined: many applications in process theory, epistemic logic, ...
» Interesting mathematical theory:

» interesting mix of algebraic|coalgebraic features

» connections with theory of automata on infinite objects
» game-theoretical semantics

» interesting meta-logic

General Program

Understand modal fixpoint logics by studying the interaction between
e combinatorial

e algebraic and

e coalgebraic

aspects

Here: consider axiomatization problem

Axiomatization of fixpoints

Least fixpoint up.¢ should be axiomatized by

Axiomatization of fixpoints

Least fixpoint up.¢ should be axiomatized by

» a least (pre-)fixpoint axiom:

e(up-p) b up.p
» Park’'s induction rule
oY)
pp-p =1

(Here o ¢ (3 abbreviates -y o — j3)

Axiomatization results for modal fixpoint logics

LTL: Gabbay et alii (1980)

PDL: Kozen & Parikh (1981)

#ML (aconjunctive fragment): Kozen (1983)
CTL: Emerson & Halpern (1985)

uML: Walukiewicz (1993/2000)

CTL*: Reynolds (2000)

LTL/CTL uniformly: Lange & Stirling (2001)

common knowledge logics: various

VVvVyVvyVYVYyVVYYVY

Axiomatization results for modal fixpoint logics

LTL: Gabbay et alii (1980)

PDL: Kozen & Parikh (1981)

#ML (aconjunctive fragment): Kozen (1983)
CTL: Emerson & Halpern (1985)

uML: Walukiewicz (1993/2000)

CTL*: Reynolds (2000)

LTL/CTL uniformly: Lange & Stirling (2001)

common knowledge logics: various

VVvVyVvyVYVYyVVYYVY

So what is the problem?

Axiomatization problem

Questions (2015)
» How to generalise these results to restricted frame classes?

» How to generalise results to similar logics, eg, the monotone
p-calculus?
» Does completeness transfer to fragments of uML? (Ex: game logic)

» What about proof theory?

Axiomatization problem

Questions (2015)
» How to generalise these results to restricted frame classes?

» How to generalise results to similar logics, eg, the monotone
p-calculus?

» Does completeness transfer to fragments of uML? (Ex: game logic)

» What about proof theory?

Compared to basic modal logic

» there are no sweeping general results
such as Sahlqvist's theorem

Axiomatization problem

Questions (2015)
» How to generalise these results to restricted frame classes?
» How to generalise results to similar logics, eg, the monotone
p-calculus?
» Does completeness transfer to fragments of uML? (Ex: game logic)

» What about proof theory?

Compared to basic modal logic

» there are no sweeping general results
such as Sahlqvist's theorem

» there is no no comprehensive completeness theory
(duality, canonicity, filtration, ...)

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

Obstacle 1: computational danger zone

Example

Obstacle 1: computational danger zone

Example
» Language: Or, Oy

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1

Obstacle 1: computational danger zone

Example

» Language: Or, Oy

» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1

» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1
» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp
» KG is sound and complete with respect to its Kripke frames

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1
» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp
» KG is sound and complete with respect to its Kripke frames
» Add master modality, (x)p := ux.pV Orx V Opyx

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1
» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp
» KG is sound and complete with respect to its Kripke frames
» Add master modality, (x)p := ux.pV Orx V Opyx
» 1 KG is sound but incomplete with respect to its Kripke frames
» Proof:

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1
» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp
» KG is sound and complete with respect to its Kripke frames
» Add master modality, (x)p := ux.pV Orx V Opyx
» 1 KG is sound but incomplete with respect to its Kripke frames
» Proof: Use recurrent tiling problem to show that

Obstacle 1: computational danger zone

Example
» Language: Or, Oy
» Intended Semantics: N x N
» (mn)R(m',n’)iffm=m+1landn =n
» (mn)U(m',n")iffm =mand i =n+1
» Logic KG =K +
» functionality: Orp < Ogp and Oyp < Qup
» confluence: OrOyp — Ourp
» KG is sound and complete with respect to its Kripke frames
» Add master modality, (x)p := ux.pV Orx V Opyx
» 1 KG is sound but incomplete with respect to its Kripke frames
» Proof: Use recurrent tiling problem to show that

» the Og, Oy, (x)-logic of Fr(KG) is not recursively enumerable

Obstacle 2: compactness failure

» Example: (x)p =\, O"p
» {(x)p} U{D"—p | n € w} is finitely satisfiable but not satisfiable

Obstacle 2: compactness failure

» Example: (x)p =\, O"p
» {(x)p} U{D"—p | n € w} is finitely satisfiable but not satisfiable

» Fixpoint logics have no nice Stone-based duality

Obstacle 3: fixpoint alternation

» tableaux: fixpoint unfolding
» v-fixpoints may be unfolded infinitely often

» u-fixpoints may only be unfolded finitely often

Obstacle 3: fixpoint alternation

» tableaux: fixpoint unfolding
» v-fixpoints may be unfolded infinitely often
» u-fixpoints may only be unfolded finitely often
» with every branch of tableau associate a trace graph

Obstacle 3: fixpoint alternation

» tableaux: fixpoint unfolding

» v-fixpoints may be unfolded infinitely often

» u-fixpoints may only be unfolded finitely often
» with every branch of tableau associate a trace graph
» obstacle 3a: conjunctions cause trace proliferation

Obstacle 3: fixpoint alternation

» tableaux: fixpoint unfolding

» v-fixpoints may be unfolded infinitely often

» u-fixpoints may only be unfolded finitely often
» with every branch of tableau associate a trace graph
» obstacle 3a: conjunctions cause trace proliferation

» obstacle 3b: fixpoint alternations cause intricate combinatorics

What to do?

What to do?

» consider simple frame conditions only (if at all)

What to do?

» consider simple frame conditions only (if at all)

» restrict language to fixpoints of simple formulas (avoid alternation)

What to do?

» consider simple frame conditions only (if at all)
» restrict language to fixpoints of simple formulas (avoid alternation)

» allow alternation, but develop suitable combinatorical framework

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

Flat Modal Fixpoint Logics: Syntax

» Fix a basic modal formula ¥(x, B), positive in x

Flat Modal Fixpoint Logics: Syntax

» Fix a basic modal formula ¥(x, B), positive in x

» Add a fixpoint connective i, to the language of ML
(arity of £, depends on 7 but notation hides this)

Flat Modal Fixpoint Logics: Syntax

» Fix a basic modal formula ¥(x, B), positive in x

» Add a fixpoint connective i, to the language of ML
(arity of £, depends on 7 but notation hides this)

» Example: Upq := pux.pV (g A Ox),
now: Upq :=f,(p, q) with v = pV (g A Ox)
» Intended reading: f- (&) = ux.y(x, @) for any @ = (¢1,...,@n).

Flat Modal Fixpoint Logics: Syntax

» Fix a basic modal formula ¥(x, B), positive in x

» Add a fixpoint connective i, to the language of ML
(arity of £, depends on 7 but notation hides this)

» Example: Upq := pux.pV (g A Ox),

now: Upq :=f,(p, q) with v = pV (g A Ox)
» Intended reading: f- (&) = ux.y(x, @) for any @ = (¢1,...,@n).
» Obtain language ML,:

o u=plop | LT[@Vea | oiApz | e | Oip | §,(P)

Flat Modal Fixpoint Logics: Syntax

» Fix a basic modal formula ¥(x, B), positive in x

» Add a fixpoint connective i, to the language of ML
(arity of £, depends on 7 but notation hides this)

» Example: Upq := pux.pV (g A Ox),

now: Upq :=f,(p, q) with v = pV (g A Ox)
» Intended reading: f- (&) = ux.y(x, @) for any @ = (¢1,...,@n).
» Obtain language ML,:

o u=plop | LT[@Vea | oiApz | e | Oip | §,(P)

» Examples: CTL, LTL, (PDL), ...

Flat Modal Fixpoint Logics: Kripke Semantics

» Kripke frame S = (S, R) with RC S x S.
» Complex algebra: ST := (p(S),d, S, ~s,U,N, (R)),

(R) : p(S) — p(S) given by
(R)(X) :={s €S| Rst for some t € X}

Flat Modal Fixpoint Logics: Kripke Semantics

» Kripke frame S = (S, R) with RC S x S.
» Complex algebra: ST := (p(S),d, S, ~s,U,N, (R)),

(R) : p(S) — p(S) given by
(R)(X) :={s €S| Rst for some t € X}

» Every modal formula ¢(p1, ..., p,) corresponds to a term function
0 9(S)" = p(S).

» ~ positive in x, hence v° order preserving in x.

Flat Modal Fixpoint Logics: Kripke Semantics

» Kripke frame S = (S, R) with RC S x S.
» Complex algebra: ST := (p(S),d, S, ~s,U,N, (R)),

(R) : p(S) — p(S) given by
(R)(X) :={s €S| Rst for some t € X}

» Every modal formula ¢(p1, ..., p,) corresponds to a term function
0 9(S)" = p(S).

» ~ positive in x, hence v° order preserving in x.
» By Knaster-Tarski we may define #° : p(S)"” — @(S) by

45(B) := LFP.~°(—, B).

Flat Modal Fixpoint Logics: Kripke Semantics

» Kripke frame S = (S, R) with RC S x S.
» Complex algebra: ST := (p(S),d, S, ~s,U,N, (R)),

(R) : p(S) — p(S) given by
(R)(X) :={s €S| Rst for some t € X}

» Every modal formula ¢(p1, ..., p,) corresponds to a term function
0 9(S)" = p(S).

» ~ positive in x, hence v° order preserving in x.
» By Knaster-Tarski we may define #° : p(S)"” — @(S) by

45(B) := LFP.~°(—, B).

» Kripke f-algebra S* := (p(S), 3, S, ~s,U,N, (R), #°).

Candidate Axiomatization

K, := K extended with

» prefixpoint axiom:
Y(#(#), @) - £(&)

» Park's induction rule:

from (v, &) - ¢ infer §,(F) F 9.

Flat Modal Fixpoint Logics: Algebraic completeness proof

Flat Modal Fixpoint Logics: Algebraic completeness proof

» Modal f-algebra: A= (A, L, T,—,A,V,O,8) withf: A" — A
satisfying

4(b) = LFP.,

where 'yg‘ :A— Als given by ’yg(a) = ~4(a, B)

Flat Modal Fixpoint Logics: Algebraic completeness proof

» Modal f-algebra: A= (A, L, T,—,A,V,O,8) withf: A" — A
satisfying .
t(b) = LFP.y%,
A P A — A5 B
where Vg A — Ais given by Vg (a) :=~v"(a, b).
» Axiomatically: modal f-algebras satisfy

> (1Y), y) < ()
» if y(x,¥) < x then §(¥) < x.

» Completeness for flat fixpoint logics: Equ(MAy) 2 Equ(KAy)

Flat Modal Fixpoint Logics: Algebraic completeness proof

» Modal f-algebra: A= (A, L, T,—,A,V,O,8) withf: A" — A
satisfying .
t(b) = LFP.y%,
A P A — A5 B
where Vg A — Ais given by Vg (a) :=~v"(a, b).
» Axiomatically: modal f-algebras satisfy

> (1Y), y) < ()
» if y(x,¥) < x then §(¥) < x.

» Completeness for flat fixpoint logics: Equ(MAy) 2 Equ(KAy)
» Two key concepts:

Flat Modal Fixpoint Logics: Algebraic completeness proof

» Modal f-algebra: A= (A, L, T,—,A,V,O,8) withf: A" — A
satisfying .
4(b) = LFP.Z,

where 'yg‘ :A— Als given by fyg(a) = ~4(a, B)

» Axiomatically: modal f-algebras satisfy

> (1Y), y) < ()
» if y(x,¥) < x then §(¥) < x.

» Completeness for flat fixpoint logics: Equ(MAy) 2 Equ(KAy)
» Two key concepts:
» constructiveness

» (O-adjointness

Constructiveness

» An MA;-algebra A is constructive if

$(B) = \/ 2(L).

ncw

Constructiveness

» An MA;-algebra A is constructive if

$(B) = \/ 2(L).

ncw

Note: we do not require A to be complete!

Constructiveness

» An MA;-algebra A is constructive if

$(B) = \/ 2(L).

ncw

Note: we do not require A to be complete!

Theorem (Santocanale & Venema)
Let A be a countable, residuated, modal #-algebra.
If Ais constructive, then A can be embedded in a Kripke #-algebra.

Constructiveness

» An MA;-algebra A is constructive if

$(B) = \/ 2(L).

ncw

Note: we do not require A to be complete!

Theorem (Santocanale & Venema)
Let A be a countable, residuated, modal #-algebra.
If Ais constructive, then A can be embedded in a Kripke #-algebra.

Proof
Via a step-by-step construction/generalized Lindenbaum Lemma.
Alternatively, use Rasiowa-Sikorski Lemma.

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.
» £ is a (left) adjoint or residuated if it has a residual g : Q — P with

fp<q < p<gq.

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.
» £ is a (left) adjoint or residuated if it has a residual g : Q — P with

fp<q < p<gq.
» fis a (left) O-adjoint if it has an O-residual G : Q@ — @, (P) with

fp<qg < p<yforsomey € Gfq.

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.
» £ is a (left) adjoint or residuated if it has a residual g : Q — P with

fp<q < p<gq.
» fis a (left) O-adjoint if it has an O-residual G : Q@ — @, (P) with
fp<qg < p<yforsomey € Gfq.

Proposition (Santocanale 2005)
> f is a left adjoint iff f is a join-preserving O-adjoint

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.
» £ is a (left) adjoint or residuated if it has a residual g : Q — P with

fp<q < p<gq.
» fis a (left) O-adjoint if it has an O-residual G : Q@ — @, (P) with
fp<qg < p<yforsomey € Gfq.

Proposition (Santocanale 2005)
> f is a left adjoint iff f is a join-preserving O-adjoint
» (O-adjoints are Scott continuous

O-adjoints

Let f: (P,<) — (Q, <) be an order-preserving map.
» £ is a (left) adjoint or residuated if it has a residual g : Q — P with

fp<q < p<gq.
» fis a (left) O-adjoint if it has an O-residual G : Q@ — @, (P) with
fp<qg < p<yforsomey € Gfq.

Proposition (Santocanale 2005)
> f is a left adjoint iff f is a join-preserving O-adjoint
» (O-adjoints are Scott continuous
> A is continuous but not an O-adjoint.

Finitary (O-adjoints

Let f : A” — A be an O-adjoint with O-residual G.

Finitary (O-adjoints

Let f : A” — A be an O-adjoint with O-residual G.
» Inductively define G" : A — p(A)

G%a) = {a}
G"™(a) = G[G"(a)]

Finitary (O-adjoints

Let f : A” — A be an O-adjoint with O-residual G.
» Inductively define G" : A — p(A)

G%a) = {a}
G"™(a) = G[G"(a)]

» Call f finitary if G¥(a) 1= J,c,, G"(a) is finite.

Finitary (O-adjoints

Let f : A” — A be an O-adjoint with O-residual G.
» Inductively define G" : A — p(A)

G%a) = {a}
G™(a) = G[G"(a)]

» Call f finitary if G¥(a) 1= J,c,, G"(a) is finite.
Theorem (Santocanale 2005)

If f:A— Ais a finitary O-adjoint, then LFP.f, if existing, is
constructive.

Adjoints on free algebras

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

» Whitman's rule for free lattices, ...

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

» Whitman's rule for free lattices, ...

» Call a modal formula 7 untied in x if it belongs to

vyiu=x | T | yVvy | oAy | V{in,...

where 1) does not contain x

s Vn}

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

» Whitman's rule for free lattices, ...

» Call a modal formula 7 untied in x if it belongs to

yu=x | T | yVvy [©Ay | V{v,...;7}

where 1) does not contain x

» Examples: Ox, Ox, Ox A OOx AOp, OxAOOxADO(OxV COx), ...

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

» Whitman's rule for free lattices, ...

» Call a modal formula 7 untied in x if it belongs to

yu=x | T | yVvy [©Ay | V{v,...;7}

where 1) does not contain x

» Examples: Ox, Ox, Ox A OOx AOp, OxAOOxADO(OxV COx), ...

» Counterexamples: O(x A Ox), Ox A OOx

Adjoints on free algebras

» Free modal (-)algebras have many O-adjoints!
» cf. free distributive lattice are Heyting algebras,

» Whitman's rule for free lattices, ...

» Call a modal formula 7 untied in x if it belongs to

yu=x | T | yVvy [©Ay | V{v,...;7}

where 1) does not contain x

» Examples: Ox, Ox, Ox A OOx AOp, OxAOOxADO(OxV COx), ...

» Counterexamples: O(x A Ox), Ox A OOx

Theorem (Santocanale & YV 2010)
Untied formulas are finitary (O-adjoints.

A general result

A general result

Theorem (Santocanale & YV 2010)
Let v be untied wrt x. Then K, is sound and complete wrt its Kripke
semantics.

A general result

Theorem (Santocanale & YV 2010)

Let v be untied wrt x. Then K, is sound and complete wrt its Kripke
semantics.

Notes

A general result

Theorem (Santocanale & YV 2010)

Let v be untied wrt x. Then K, is sound and complete wrt its Kripke
semantics.

Notes

» Santocanale & YV have fully general result for extended axiom
system.

A general result

Theorem (Santocanale & YV 2010)

Let v be untied wrt x. Then K, is sound and complete wrt its Kripke
semantics.

Notes

» Santocanale & YV have fully general result for extended axiom
system.

» Schroder & YV have similar results for wider coalgebraic setting.

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

The modal p-calculus

» [+] natural extension of basic modal logic with fixpoint operators
» [+] expressive: LTL, CTL, PDL, CTL*, ...C uML

» [+] good computational properties

» [+] nice meta-logical theory

The modal p-calculus

[+] natural extension of basic modal logic with fixpoint operators
[+] expressive: LTL, CTL, PDL, CTL*, ... C uML
[+] good computational properties

[+] nice meta-logical theory

vvyyvyyvyy

[—] hard to understand (nested) fixpoint operators

The modal p-calculus

[+] natural extension of basic modal logic with fixpoint operators
[+] expressive: LTL, CTL, PDL, CTL*, ... C uML

[+] good computational properties

[+] nice meta-logical theory

[—] hard to understand (nested) fixpoint operators

[-] theory of ML isolated from theory of ML

vVvyvyVvyYyvyy

The modal p-calculus

[+] natural extension of basic modal logic with fixpoint operators
[+] expressive: LTL, CTL, PDL, CTL*, ... C uML

[+] good computational properties

[+] nice meta-logical theory

[—] hard to understand (nested) fixpoint operators

[-] theory of ML isolated from theory of ML
» this applies in particular to the completeness result

vVvyvyVvyYyvyy

The modal p-calculus

[+] natural extension of basic modal logic with fixpoint operators
[+] expressive: LTL, CTL, PDL, CTL*, ... C uML

[+] good computational properties

[+] nice meta-logical theory

[—] hard to understand (nested) fixpoint operators

[-] theory of ML isolated from theory of ML
» this applies in particular to the completeness result

vVvyvyVvyYyvyy

Most results on ML use automata ...

Logic & Automata

Logic & Automata

Automata in Logic
» long & rich history (Biichi, Rabin, ...)
» mathematically interesting theory
» many practical applications
» automata for uML:
» Janin & Walukiewicz (1995): p-automata (nondeterministic)
» Wilke (2002): modal automata (alternating)

Modal automata

Fix a set X of proposition letters; PX is a set of colours

» A modal automaton is a triple A = (A, ©, Acc), where
» Ais a finite set of states
» ©:Ax PX — 1IML(A) is the transition map

» Acc C A” is the acceptance condition

Modal automata

Fix a set X of proposition letters; PX is a set of colours

» A modal automaton is a triple A = (A, ©, Acc), where
» Ais a finite set of states
» ©:Ax PX — 1IML(A) is the transition map

» Acc C A” is the acceptance condition

» An initialized automaton is a pair (A, a) with a€ A

Modal automata

Fix a set X of proposition letters; PX is a set of colours

» A modal automaton is a triple A = (A, ©, Acc), where
» Ais a finite set of states
» ©:Ax PX — 1IML(A) is the transition map

» Acc C A” is the acceptance condition

» An initialized automaton is a pair (A, a) with a€ A

» Parity automata: Acc is given by map Q: A — w
» Given p € A*, Inf(p) := {a € A| a occurs infinitely often in 7}
> Accq = {p € A” | max{Q(a) | a € Inf(p)} is even }

Modal automata

Fix a set X of proposition letters; PX is a set of colours

» A modal automaton is a triple A = (A, ©, Acc), where
» Ais a finite set of states
» ©:Ax PX — 1IML(A) is the transition map

» Acc C A” is the acceptance condition

» An initialized automaton is a pair (A, a) with a€ A

» Parity automata: Acc is given by map Q: A — w
» Given p € A*, Inf(p) := {a € A| a occurs infinitely often in 7}
> Accq = {p € A” | max{Q(a) | a € Inf(p)} is even }

» Our approach: automata are formulas

One-step logic 1ML

> Let A be a set of variables with AN X =2
» One-step formulas: OG(aAb), Dan<b, T, OL,. ..

> A one-step model is a pair (U, m) with m: U — PA a marking
» write U, m,ulF° aif a € m(u)

One-step logic 1ML

v

Let A be a set of variables with AN X =g

One-step formulas: OG(aAb), Dan<b, T, OL,. ..

A one-step model is a pair (U, m) with m: U — PA a marking
» write U, m,ulF° aif a € m(u)

One-step modal language 1IML(X, A) over A

v

v

v

a = Or|oOr| L | T|aVa| aha
T = ac€A| L | T |avr|mAn

One-step logic 1ML

v

Let A be a set of variables with AN X =g

One-step formulas: OG(aAb), Dan<b, T, OL,. ..

A one-step model is a pair (U, m) with m: U — PA a marking
» write U, m,ulF° aif a € m(u)

v

v

» One-step modal language 1IML(X, A) over A
a = Or|oOr| L | T|aVa| aha
T = ac€A| L | T |avr|mAn

» One-step semantics interprets 1IML(A) over one-step models, e.g.
» (UmiH oaiffYue UulF® a
» (Um)IF O(anb)iffJuc UulF® anb

Acceptance game

» Represent Kripke model as pair S = (S,0) with 0 : S — PX x PS
Acceptance game A(A,S) of A = (A,0©,Acc) on S = (S,0):

Position Player | Admissible moves
(a,s)€AXS 3 {m:og(s) = PA|o(s),mIF ©(a)}
m:S5 = PA v {(b,t) | be m(t)}

Acceptance game

» Represent Kripke model as pair S = (S,0) with 0 : S — PX x PS
Acceptance game A(A,S) of A = (A,0©,Acc) on S = (S,0):

Position Player | Admissible moves
(a,s)€AXS 3 {m:og(s) = PA|o(s),mIF ©(a)}
m:S5 = PA v {(b,t) | be m(t)}

Winning conditions:
» finite matches are lost by the player who gets stuck,
» infinite matches are won as specified by the acceptance condition:

> match 7 = (ao, s0)mo(a1, s1)m1 ... induces list ma := aga1az . ..
» Jwins if T4 € Acc

Acceptance game

» Represent Kripke model as pair S = (S,0) with 0 : S — PX x PS
Acceptance game A(A,S) of A = (A,0©,Acc) on S = (S,0):

Position Player | Admissible moves
(a,s)€AXS 3 {m:og(s) = PA|o(s),mIF ©(a)}
m:S5 = PA v {(b,t) | be m(t)}

Winning conditions:
» finite matches are lost by the player who gets stuck,
» infinite matches are won as specified by the acceptance condition:

> match 7 = (ao, s0)mo(a1, s1)m1 ... induces list ma := aga1az . ..
» Jwins if T4 € Acc

Definition (A, a) accepts (S, s) if (a,s) € Win3(A(A,S)).

Themes

Basis

» There are well-known translations: formulas <+ automata

Themes

Basis

» There are well-known translations: formulas <+ automata

Goal:

» Understand modal fixpoint logics via corresponding automata

Themes

Basis

» There are well-known translations: formulas <+ automata

Goal:

» Understand modal fixpoint logics via corresponding automata

Perspective:
» automata are generalized formulas with interesting inner structure

» automata separate the dynamics (©) from the combinatorics (2)

Themes

Basis

» There are well-known translations: formulas <+ automata

Goal:

» Understand modal fixpoint logics via corresponding automata

Perspective:
» automata are generalized formulas with interesting inner structure

» automata separate the dynamics (©) from the combinatorics (2)

Leading question:

» Which properties of modal parity automata are determined
- already at one-step level

Themes

Basis

» There are well-known translations: formulas <+ automata

Goal:

» Understand modal fixpoint logics via corresponding automata

Perspective:
» automata are generalized formulas with interesting inner structure

» automata separate the dynamics (©) from the combinatorics (2)

Leading question:
» Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Automata & ...

Theorem
There are maps B_ : uML — Aut(ML;) and & : Aut(ML;) — pML that
(1) preserve meaning: ¢ =B, and A = {(A)

Automata & ...

Theorem

There are maps B_ : uML — Aut(ML;) and & : Aut(ML;) — pML that
(1) preserve meaning: ¢ =B, and A = {(A)

(2) interact nicely with Booleans, modalities, fixpoints, and substitution

Automata & ...

Theorem

There are maps B_ : uML — Aut(ML;) and & : Aut(ML;) — pML that
(1) preserve meaning: ¢ =B, and A = {(A)

(2) interact nicely with Booleans, modalities, fixpoints, and substitution
(3) satisfy ¢ = &(B,,)

Automata & ...

Theorem

There are maps B_ : uML — Aut(ML;) and & : Aut(ML;) — pML that
(1) preserve meaning: ¢ =B, and A = {(A)

(2) interact nicely with Booleans, modalities, fixpoints, and substitution
(3) satisfy ¢ = &(B,,)

As a corollary, we may apply proof-theoretic concepts to automata

Completeness at one-step level

» Given o, o’ € IML define E! o < o if for all (U, m):

(U, m) IF* o implies (U, m) IF* o,

Completeness at one-step level

» Given o, o’ € IML define E! o < o if for all (U, m):

(U, m) IF* o implies (U, m) IF* o,

» A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities 7 < 7/, a < .

Completeness at one-step level

» Given o, o’ € IML define E! o < o if for all (U, m):

(U, m) IF* o implies (U, m) IF* o,

» A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities 7 < 7/, a < .

» Example: the core of basic modal logic K consists of
» monotonicity rule for &: a < b/ Ca< b
» normality (¢L < 1) and additivity (¢(aV b) < CaVv Ob) axioms

Completeness at one-step level

» Given o, o’ € IML define E! o < o if for all (U, m):

(U, m) IF* o implies (U, m) IF* o,

» A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities 7 < 7/, a < .

» Example: the core of basic modal logic K consists of
» monotonicity rule for &: a < b/ Ca< b
» normality (¢L < 1) and additivity (¢(aV b) < CaVv Ob) axioms

» A derivation system H is one-step sound and complete if

Fha <o iff Ela<d.

Completeness at one-step level

» Given o, o’ € IML define E! o < o if for all (U, m):

(U, m) IF* o implies (U, m) IF* o,

» A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities 7 < 7/, a < .

» Example: the core of basic modal logic K consists of
» monotonicity rule for &: a < b/ Ca< b
» normality (¢L < 1) and additivity (¢(aV b) < CaVv Ob) axioms

» A derivation system H is one-step sound and complete if
Fha <o iff Ela<d.

» For more on this, check the literature on coalgebra (Cirstea, Pattinson, Schréder,. ..)

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for pL.

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time p-calculus,

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time pu-calculus, k-successor p-calculus,

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time pu-calculus, k-successor p-calculus,
standard modal p-calculus,

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time pu-calculus, k-successor p-calculus,
standard modal p-calculus, graded p-calculus,

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time pu-calculus, k-successor p-calculus,
standard modal p-calculus, graded p-calculus,
monotone modal u-calculus,

General result

Theorem Assume that
» L is a one-step language with an adequate disjunctive base
» H is a one-step sound and complete axiomatization for £
Then Hy is a sound and complete axiomatization for L.

Proof
‘De- and re-constructing’ Walukiewicz' proof — automata in leading role

Examples:

» linear time pu-calculus, k-successor p-calculus,
standard modal p-calculus, graded p-calculus,
monotone modal u-calculus, game p-calculus, . ..

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

Frame conditions

Conjecture Let L be an extension of Ky or Ki
with an axiom set ® such that each ¢ € ®

» is canonical
» corresponds to a universal first-order frame condition.

Then L is sound and complete for the class of frames satisfying ®.

Overview

> Introduction

» Obstacles

> A general result
> A general framework
» Frame conditions

>

Conclusions

But first:

www.cs.cas.cz/tacl2017

But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

www.cs.cas.cz/tacl2017

But first:

O
O T ACL_
O
@

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20-24 : TACL School
2017 June 26-30 : TACL Conference

WWww.cs.cas.cz/tacl2017 ‘

www.cs.cas.cz/tacl2017

Conclusions

Conclusions

» general completeness result for flat fixpoint logics

Conclusions

» general completeness result for flat fixpoint logics

» framework for proving completeness for p-calculi

Conclusions

» general completeness result for flat fixpoint logics
» framework for proving completeness for p-calculi
» perspective for bringing automata into proof theory

Future work

> prove conjecture!
» completeness for fragments of uML (game logic!)

» many pgML-fragments have interesting automata-theoretic
counterparts!

> interpolation for fixpoint logics (PDL!)
» fixpoint logics on non-boolean basis

» non-boolean automata?
» proof theory for modal automata
» further explore notion of O-adjointness

References

» L. Santocanale & YV. Completeness for flat modal fixpoint logic APAL 2010

» L. Schroder & YV. Completeness for flat coalgebraic fixpoint logic submitted
(short version appeared in CONCUR 2010)

» S. Enquist, F. Seifan & YV. Completeness for coalgebraic fixpoint logic CSL
2016.

» S. Enquist, F. Seifan & YV. Completeness for the modal p-calculus: separating
the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.

» YV. Lecture notes on the modal p-calculus. Manuscript, ILLC, 2012.

http://staff.science.uva.nl/~yde

http://staff.science.uva.nl/~yde

THANK YOU!

