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» Adjunctions between quasi-varieties.

» Translations between logics:

Kolmogorov's translations of CPC into ZPC
Godel's translation of ZPC into S4.

» Twist constructions:

Distributive lattices — Kleene lattices
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> Select in some elements G(A) C A* and define new basic
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» Let X be a class of similar algebras and x > 0 be a cardinal.
» Consider the language £ whose n-ary operations are the

K-sequences
(ti i < k) where each t; is a term of X

in variables xi, ..., X,.

Definition
Consider an algebra A € X. We let A"l be the algebra of type L5

with universe A® where

Y

g [xl, o - o o o o g
(i < k) (EL,...,3,) = (tA(3L/X1, . . . 3n/%0) i < K).

The x-th matrix power of X is the class

X = 1{Al" - A e X}
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» For every A € X, we let A(0,.Z) be the algebra of type ¥
with universe

A0, Z)={ac A: AE0(a)}
equipped with the restriction of the operations in .Z.
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Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

G:Y =X

there is a (generalized) quasi-variety K and functors

[]: Y > Kand fy: K— X

such that G is naturally isomorphic to 6. o [k].

2. Every functor of the form 6 o [s]: Y — X is a right adjoint.
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Miscellanea

Some applications of these tools:
» Universal Algebra: congruence regularity is not a linear Maltsev
condition.

» Abstract Algebraic Logic: every prevariety is categorically
equivalent to the equivalent algebraic semantics of an
algebraizable logic.

» Computational aspects: the problem of determining whether
two finite algebras are related by an adjunction is decidable.

16 /17



Adjunctions and Translations

Finally...

...thank you for coming!
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